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Abstract

Mobile devices play an increasingly important role in the cryptocurrency

ecosystem, yet their privacy guarantees remain unstudied. To verify trans-

actions, they either trust a server or use simple payment verification.

First, we review the security and privacy of popular Android wallets

for Bitcoin and the three major privacy-focused cryptocurrencies (Dash,

Monero, Zcash). Then, we investigate the network-level properties of cryp-

tocurrencies and propose a method of transaction clustering based on timing

analysis. We implement and test our method on selected wallets and show

that a moderately resourceful attacker can correlate transactions issued from

one device with relatively high accuracy.
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1. Introduction

Bitcoin is a decentralized digital currency launched in 2009. Multiple

alternative cryptocurrencies have been proposed since. A cryptocurrency

is based on P2P network of nodes. Full nodes download and validate the

whole blockchain. Light, or thin, nodes query information from other nodes
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to save storage space and bandwidth. Light nodes present trade-offs in

terms of security and privacy. First, in case of a successful eclipse attack,

an adversary can deny service or provide false information. Therefore, it

is important for light nodes to ensure that at least one connected full node

is honest. This is achieved by either connecting to a random set of nodes

(bootstrapping), or to a trusted node. Second, an “honest but curious” node

or a global passive adversary can deduct a user’s Bitcoin addresses based on

Bloom filters [14].

Cryptocurrency wallets on mobile devices have limited resources, there-

fore they either fully trust a centralized server for blockchain data, or use the

simple payment verification protocol (SPV). An SPV node connects to full

nodes and downloads only block headers, assuming the header with the most

proof-of-work is the valid one. Full nodes provide light nodes with trans-

actions information along with a Merkle proof of their membership in the

heaviest chain. To provide stronger privacy, SPV nodes issue queries using

Bloom filters with a specified false positive rate (and zero false negatives),

and discard unnecessary data client-side.

We are using the term “privacy” to denote the situation where details of a

person’s cryptocurrency transactions are hidden from third parties. Related

concepts are anonymity and confidentiality. In Section 2.1, we consider

wallet developers as adversaries trying to collect data about their users’

transactions. Through studying the features of prominent mobile wallet,

we try to estimate the amount of personal information their developers can

collect. We evaluate the security and privacy of popular Android wallets

for various cryptocurrencies. We formulate four criteria for a minimally

privacy-preserving wallet and apply them to a selection of wallets. Then, in

Section 3, we study the source code of selected wallets, both manually and
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using static analysis tools, to detect potential to privacy violations. Then,

in Section 4, we consider an adversary who is listening to network traffic

and seeks to correlate cryptocurrency addresses with IP addresses of nodes

or other identifying information. We present a deanonymization algorithm

that clusters transactions originating from the same node. We evaluate its

efficiency on selected wallets and provide a list of recommendations to users

and developers. Section 7 provides a review of related work, and Section 8

concludes.

2. Security and privacy of mobile wallets

We distinguish two types of mobile wallets from a networking perspec-

tive. Wallets with centralized broadcast (referred to as centralized wallets)

send transactions to a server maintained by the wallet developers, which

broadcasts them to the P2P network. Wallets with P2P broadcast (P2P

wallets) connect to peers directly.

We compile a list of wallets recommended on the official websites of the

considered cryptocurrencies: Bitcoin, Dash, Monero, and Zcash. We add

to the list the most popular wallets according to Google Play1). Addition-

ally, we also consider Samourai – a Bitcoin wallet specifically advertised as

privacy-focused. Note that Samourai connects to a selected trusted node

via RPC, not P2P, and requires full control over it [23] (marked with “+*”

1Popular wallets not mentioned on any official websites are Bitcoin wallet by Bit-

coin.com (referred to as Bitcoin.com), Bitpay, and Copay. Copay is an open-source wallet

developed by Bitpay. The same company also offers the Bitpay wallet, which is based on

the source code of Copay with some additional services. Due to the similarity of these

wallets, we only considered Copay.
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in Table 1).

2.1. Initial privacy criteria

Paying with cryptocurrency involves signing a transaction and sending

it to the P2P network for miners to confirm. To preserve privacy, a user

should not be required to provide any information to the wallet provider.

To ensure the lack of backdoors or other unintended functionality, a wallet

should also be open-sourced, which is a common requirement for security-

related software. Consequently, we argue that the following criteria are

minimally necessary for a mobile wallet2:

1. No registration required. Otherwise, the user’s transactions can be

deanonymized by the wallet provider. We check this criterion by in-

stalling a wallet and attempting to generate a receiving address with-

out providing any personal information.

2. Open-sourced code. A malicious closed-source application can track

users or even steal their funds. We consider this criterion met if there

is a publicly available code repository with a fully fledged Android

application linked from the wallet’s official website.

3. Private keys generated locally. A hosted wallet (which stores keys on

a server) requires full trust.

4. P2P networking. The wallet must request blockchain data and broad-

cast transactions via the P2P network directly, not via a trusted server,

which can deanonymize and censor transactions.

We check the criteria 3 and 4 based on the official documentation and the

source code, if available. The following wallets pass our initial test (Bitcoin

2For wallets which require registration, we may not have checked all other criteria.
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unless specified): Bitcoin wallet, Bither, BRD, Dash wallet (Dash), Elec-

trum3, Monerujo (Monero), Simple Bitcoin (see Table 1). Zcash has no

Android wallets that satisfy our privacy criteria. No multi-currency wallets

satisfy our criteria.

3. Analysis of selected wallets

We compare the wallets which passed our initial criteria manually and

using static analysis tools.

3.1. Manual inspection

Independent installation. The most prevalent way of installing Android apps

is the Google Play store. A privacy-conscious user may want to avoid linking

their cryptocurrency activity with their Google profile. Alternative ways to

install Android apps are F-Droid (an independent app store for free and

open source apps) or manual installation from an APK file.

Permissions. Android permissions restrict access to certain user informa-

tion and device functionality. Each application declares the necessary per-

missions in its manifest file. The user grants permissions at installation time

or at runtime (starting from Android 6.0). Permissions that give access to

critical functionality or personal information are refereed to as dangerous.

3Electrum is originally a desktop application; the official Github repository gives in-

structions on how to generate an APK file using Kivy GUI. Electrum wallet relies on an

independent network of nodes (Electrum servers) to receive blockchain data and broad-

cast transactions. Though Electrum servers are not genuine cryptocurrency P2P nodes,

we consider Electrum satisfy the P2P criteria, as a user can technically choose which

Electrum servers to connect to, including their own.
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[5] Airbitz requires the highest number of permissions (15). Two apps re-

quire access to both coarse and fine location (Airbitz, BRD), and sending

SMS (BRD, Samourai). Electrum requests the lowest number of permis-

sions: 3 dangerous and 1 other. All wallets require at least one dangerous

permission: camera access is needed to scan cryptocurrency addresses pre-

sented as QR codes.

Privacy policies. All Android apps that handle “personal or sensitive user

data” must have a privacy policy (PP). We compare the PPs of the selected

wallets (see Table 2). Monerujo PP notes that the app uses the exchange rate

information provided by the public API of kraken.com, and an exchange

service xmr.to, which are subjects to their own privacy policies (marked

with (+) in Table 2). Mycelium transmits a report to the developers’ server

in case of a crash; the developers claim they “took care that it does not

contain unnecessary privacy relevant information”. The Samourai wallet

collects users’ IP addresses “with replaced last byte”, which can hardly be

considered anonymization, as one may still infer the approximate location

from the first three bytes of the IP address (marked with “+*” in Table 2).

Airbitz broadcasts transactions through Electrum servers; a user may choose

one or more trusted servers.

Connecting to the network. All wallets except Monerujo use hard-coded

DNS seeds to bootstrap. BRD adds its own DNS seed4. Simple Bitcoin

adds one random node from a hard-coded list5 to a list of peers obtained

via bootstrapping. Electrum connects to two random servers from a hard-

4seed.breadwallet.com.; does not resolve at the time of writing.
55.9.104.252, 213.133.103.56, 213.133.99.89; all unreachable at the time of writing.
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coded list of 52 servers; it requests the transaction history from a single

server and checks it against block headers sent by other servers. Monerujo

lets the user either choose from 3 hard-coded URLs which resolve to a list of

publicly available nodes6 or provide credentials for connecting to a custom

node. Most wallets with P2P networking have a network monitor which

displays the IP addresses of connected nodes.

3.2. Static analysis

3.2.1. FlowDroid

We scanned the wallets with FlowDroid [11] – an open source static

analysis tool7. It uses data flow analysis to detect execution paths which

transfer data from sources (functions which return sensitive data) into sinks

(functions which send data elsewhere).

3.2.2. SmartDec Scanner

We scan the wallets using a proprietary static analysis tool SmartDec

Scanner [3]. We manually inspected the results and summarize prevalent

privacy-related issues detected by the tool, roughly in decreasing order of

potential threat. Note that these issues do not directly lead to an exploit.

Leak to external storage (Electrum, Simple Bitcoin, Jaxx, Copay, Airbitz).

Android provides internal and external storage8. An app can only access its

6node.moneroworld.com:18089, node.xmrbackb.one, node.xmr.be
7The analyses of Bitcoin wallet, Bither, and Monerujo were stopped after a 2 hour

timeout. Samourai was not scanned due to a technical limitation: the app is labeled as

unreleased, which prevented us from downloading the APK
8Historically, external storage was assumed to be on a removable memory card, now

this may not be the case.
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own directory in the itab:privacy-policiesnternal storage; external storage is

available for other apps. Sensitive data should only be kept in the internal

storage. Android automatically backs up data and settings of apps which

did not opt out by setting android:allowBackup=\false" in the Manifest

file. Automatic backups should be disabled for privacy-critical apps.

XSS attacks via Javascript in WebView (BRD, Bitcoin.com, Coinomi, Jaxx,

Copay, Airbitz). One method of developing dynamic user interfaces on An-

droid is using JavaScript inside a WebView (an Android component for dis-

playing web pages). By default, execution of JavaScript code in WebView is

disabled, but this setting can be overridden (setJavaScriptEnabled(true)).

Executing malicious9 JavaScript code may lead to cross-site scripting (XSS)

and other attacks. We detect two instances of this issue (in FragmentSupport

and WebViewActivity classes) in BRD. In both cases, the warning from An-

droid Lint – a static analyzer built into the standard Android development

environment – is suppressed.

Insecure connection (Bitcoin Wallet, Bither, Dash Wallet, Simple Bitcoin).

Parameters of a TLS connection in Java are specified in the X509TrustManager

class. Its methods can be overridden to accept all certificates (not only

those authenticated by a chain of signatures up to a trusted root CA),

which may lead to a man-in-the-middle attack. Connections between Elec-

trum servers, unlike the Bitcoin protocol, are encrypted and authenticated

with TLS. Bitcoin wallet and Dash wallet, though communicating with the

respective networks via their P2P protocols, use Electrum servers for query-

9Even trusted code, e.g., from the app’s resources, may contain unintended side effects

or bugs, as well as implicitly leak information.
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ing the balance when sweeping a paper wallet (see the X509TrustManager-

inherited RequestWalletBalanceTask class). Bither defines HTTP URLs

of its own API (bither.net) and a block explorer blockchain.info (class

BitherUrl), which can lead to displaying incorrect balances or fake trans-

actions in case of a man-in-the-middle attack. Simple Bitcoin uses five

hard-coded URLs to query current fees; one of them10 uses an unencrypted

connection. This may lead to incorrect fee estimation (and thus a potential

denial of service attack, as transactions with very low fees may never be con-

firmed), though this scenario requires four other APIs served over HTTPS

to fail simultaneously.

Leak into logs (all wallets). Android applications can write to their own log.

Applications can also read their own logs with the READ LOGS permission

(prior to Android 4.0, this also granted access to other apps’ logs). It is

possible to access logs on a rooted device, or using developer tools. All

wallets log details about their operation, including error messages, which

may include sensitive data (e.g., a trusted node’s IP). This issue is present

at least to some extent in all wallets, as all wallets use logging in exception

handlers. One may find all occurrences of this issue by searching for the

methods of the Log class, print, println, and exception handlers with

ex.printStackTrace(). Further investigation is needed to determine the

impact and probability of data leaks.

See Table 2 for the full results (BW – Bitcoin wallet, BH – Bither, BR –

BRD, D – Dash wallet, El – Electrum, Mo – Monerujo, SB – Simple Bitcoin,

Bc – Bitcoin wallet by Bitcoin.com, My – Mycelium, Co – Coinomi, Ja –

10http://api.blockcypher.com/v1/btc/main.
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Table 1: Initial list of wallets (bold: four criteria met)

Wallet Coin support No reg OS Keys local P2P

BTC DASH XMR ZEC

Abra + + + + - - + ?

Airbitz + - - - - + + ?

ArcBit + - - - + + + -

Bitcoin.com + - - - + + + -

Bitcoin wallet + - - - + + + +

Bither + - - - + - + +

BTC.com + - - - - + + -

BRD + - - - + + + +

Coin.space + - - - + + + -

Coinomi + + - + + + + -

Copay + - - - + + + -

Dash wallet - + - - + + + +

Edge + + + - - - + -

Electrum + - - - + + + +

Ethos + + + + - - ? ?

GreenBits + - - - + + + -

Jaxx + + - + + - + -

Mobi.me + + + + - - ? ?

Monerujo - - + - + + + +

Mycelium + - - - + + + -

Samourai + - - - + + + +*

Simple Bitcoin + - - - + + + +

Zelcore + - - + - - + -
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Table 2: Privacy policies of selected wallets

BW BH BR D El Mo SB Bc My Co Ja CP AB Sa

IP address - - + - + (+) ? - ? + - + + +*

browser version - - + - - (+) ? - ? + - ? + +

pages visited - - + - - (+) ? - ? + - ? + +

time of visit - - + - + (+) ? - ? + - ? + +

unique device ID - - + - - (+) ? - ? - - ? ? -

other diagnostics - - + - + (+) ? - ? + + ? + +

type of device - - + - - (+) ? - ? - - ? + +

OS type - - + - + (+) ? - ? + - ? + +

location - - + - - (+) ? - ? + - ? - -

device name - - - - + - ? - ? - - ? ? -

app configuration - - - - + - ? - ? - - ? - -

pages visited before - - - - - (+) ? - ? + - ? - -

browser plug-ins - - - - - (+) ? - ? - - ? - -

time zone - - - - - (+) ? - ? - - ? - -

“clickstream” - - - - - (+) ? - ? - - ? - -

cookies - - + - - - ? - ? - + ? + +

analytics - - + - + - ? - - - - ? + +

Trusted node + - - + + + + - - - - - + +

Data leaks 0 4 3 1 0 2 1 0 6 4 0 0 4 ?

F-Droid + - - - - + + - - - - - - -

APK download + + - - + + + + + + - - - -

Uses BitcoinJ + - - + - - + - + + - - - +

Net monitor + + ± + ± + -

Connections 4-6 6 3 4-6 2 1 10 +
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Jaxx, CP – Copay, AB – Airbitz, Sa – Samourai).

4. Transaction clustering

In this section, we discuss transaction clustering based on propagation

timing. We describe the currently used transaction broadcast mechanisms

in cryptocurrencies. We then present our method for transaction cluster-

ing based on the analysis of transaction propagation time. We test our

method on selected mobile wallets with peer-to-peer as well as with central-

ized broadcast.

4.1. Transaction propagation in cryptocurrencies

Bitcoin Core attempts to establish 8 outgoing and allows 117 incom-

ing connections by default. We refer to the set of connected nodes as the

entry set (consisting of entry nodes). Let us assume node X has a new

object (transaction or block) and wants to send it to an entry node Y . In

Bitcoin Core and its forks, this is a three-step process:

1. X sends an inventory (INV) message to Y , specifying the object hash;

2. if Y is interested in receiving the object, it replies with a GETDATA

message;

3. X sends the object in a TX or BLOCK message.

A simple P2P gossip in a cryptocurrency network may be harmful for the

users’ privacy: as messages propagate through the network in a “circular”

fashion, a well-connected adversary may infer the “source of the rumor” by

observing propagation delay at various nodes in the network. To prevent this

threat, Bitcoin messages are broadcast to neighborinig nodes after a random

delay (mechanism known as diffusion) [6]. Previously, another mechanism
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(trickling) was used, where messages were put in a queue and broadcast to a

random subset of the neighbors. Both mechanisms provide only a marginal

privacy improvement [13].

None of the P2P wallets we considered use diffusion or trickling. Most

of them rely on the BitcoinJ library for networking. Unlike Bitcoin Core,

BitcoinJ sends TX unconditionally11. The BitcoinJ developers acknowledge

that the three-step INV – GETDATA – TX exchange in Bitcoin Core improves

privacy, but argue that since BitcoinJ is used by light nodes with a priori

weaker privacy guarantees, the three-step broadcast would only decrease

efficiency. BitcoinJ and BRD broadcast a new transaction to a subset of

entry nodes and wait for the announcement from other ones, which is taken

as a sign of network acceptance.

4.2. Our approach

4.2.1. Intuition

Our goal is to cluster transactions based on the node which was the first

to introduce them into the network. Consider the first N nodes which re-

layed a transaction to our listening node. We assign weights to IP addresses

of nodes depending on the propagation timestamps. Intuitively, a peer that

relays a new transaction to us quickly is likely to be an entry node or closely

connected to one. Our clustering algorithm is based on the weight vectors

of transactions. We expect transactions originating from one node to yield

relatively well-correlated weight vectors.

11Note that in this case a full node receiving a TX message from an SPV node can be sure

that the transaction originated at that SPV node whereas receiving an INV announcement

from a full node may also be a re-broadcast. This demonstrates the privacy enhancement

of exclusively connecting to a trusted node for SPV.
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Due to broadcast randomization, we do not expect all transactions from

one node to be well-correlated. But the matrix of pairwise correlations ex-

hibits special behavior which would help us infer transactions clusters nev-

ertheless. Consider a node with eight entry nodes with IP addresses (p1 to

p8) making three transactions: tx1, tx2, tx3. If transactions were broadcast

in batch via the same subset of the entry nodes, their weight vectors would

be very similar. But due to diffusion or trickling, the following scenario is

more typical: tx1 quickly relayed from p{1,2,3}, tx2 from p{3,4,5}, tx3 from

p{5,6,7}. If we considered only the first propagation, these transactions would

seem completely unrelated. But with weight vectors, considering that those

are sparse, the correlation between tx1 and tx2 and between tx2 and tx3

would be noticeable, which would allow us to reveal not only the relation-

ship between these pairs but also among all three transactions. Note that

this technique is also applicable for transactions originating from a light

client (in this case, a cluster represents transactions from multiple clients

connected to the same full node).

4.2.2. Data collection and representation

We use a modified Bitcoin network probing tool bcclient [19] to main-

tain parallel connections to peers and log incoming messages: transaction

hash, the IP which relayed it to us, and the timestamp of this event.

We use Python scripts to extract the essential information from the log,

save it in a more compact JSON format, analyze the data, and visualize the

results. For each transaction, we save a list of (t, IP) pairs, where t is a

relative timestamp (i.e., we subtract the timestamp of the first propagation

of this transaction from all its propagations).
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4.2.3. Weight functions and clustering

Let tx be a transaction. Let ptx = [ptx1 , ptx2 , ...ptxN ] be the vector of the

first N IP addresses which relayed tx to us. Let ttx = [ttx1 , ttx2 , ...ttxN ] be the

vector of the corresponding relative timestamps. For each ptxi ∈ ptx, we

assign a parameterized weight as follows:

wk(ptxi ) = e−(t
tx
i /k)2

The weight function is chosen to reflect the decreasing importance of

every next broadcast. p1 is assigned the maximal weight of 1.0 (note that

t1 = 0 by definition); other nodes receive lower weights. Our experiments

show that this function family yields better clustering (compared to 1/(kt)

and e−kt). The intuition is that it gives higher weights to a certain window

depending on k while exponentially decreasing outside of it. Moreover, the

window size is adjusted for each vector.

For each ptx, we want to use such wk that gives sufficient variance among

the weight values. Weights quickly fall to nearly zero if k is too low and stay

close to one if k is high. Let ttxmed be the median value in ttx (average of the

high and low medians if the length of ttx is even). We choose ktxopt s.t. the

weight of ttxmed would be 0.5:

ktxopt =
ttxmed√
− ln(0.5)

This choice of k distributes the weights for any ttx: they neither stay

close to one nor quickly fall to zero (see examples in Figure 1). For each

transaction, we evaluate the vector of weights:

wtx = wktxopt
(ttx)
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Figure 1: Weight functions for three timestamp vectors

Let X be the set of all transactions we consider. Let P be the set of IP

addresses of nodes which appeared in at least one of p vectors in X:

P =
⋃

tx∈X
ptx

We define an extended weight vector vtx for each tx by setting the weight

of nodes in P\ptx to zero and sort the values in the weight vectors w. r. t. the

alphabetical order of P . We then calculate a matrix where an element in

i-th row and j-th column is the Pearson correlation of the extended weight

vectors vtxi and vtxj . This matrix can supposedly be transformed into a

block-diagonal matrix with blocks (clusters) corresponding to transaction

sources.

To reveal the clusters, we use spectral co-clustering [9] implemented in
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the Python sklearn.cluster.bicluster module [22]. Given an input ma-

trix A, the algorithm preprocesses it as follows:

An = R1/2AC−1/2

Where R is the diagonal matrix with entry i equal to
∑

j Aij , and C is

the diagonal matrix with entry j equal to
∑

iAij .

The singular value decomposition of A provides the partitions of rows

and columns: An = UΣV T . The l = dlog2 ke singular vectors provide the

partitioning information. Let U be a matrix with columns u2, . . . , ul+1, and

similarly for V . Then Z is defined as:

Z =

R−1/2 U

C−1/2 V


The rows of Z are clustered using the k-means algorithm.

4.3. Quality assessment

4.3.1. Measuring clustering quality

We use the Rand score as an external metric of clustering quality, as

described in [4] (Section 4.2). The Rand score operates on pairs of elements

and reflects the proportion of “right decisions” regarding whether to put a

pair of transactions into one or different clusters.

SS, SD, DS, and DD are numbers of transaction pairs defined as fol-

lows:

• SS: same cluster, same category (two of our transactions in the same

cluster);12

12In our case, there are only two categories: “our” and “foreign” transactions.
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• SD: same cluster, different category (our and foreign transactions in

the same cluster);

• DS: different cluster, same category (two of our transactions in differ-

ent clusters);

• DD: different cluster, different category (our and foreign transactions

in different clusters).

Note that this assessment only considers clusters with “our” transactions,

because we do not know whether any two “foreign” transactions should have

been assigned to the same cluster:

R =
SS + DD

SS + SD + DS + DD

We further modify this metric by parameterizing it with the minimal

number of our transactions in a cluster required to consider it in the calcu-

lation. In our experiments, we only consider clusters with at least two of our

transactions. With no such threshold, large clusters with one of our transac-

tions disproportionately increase DD and bring the score close to 1.0, which

does not reflect the subjective amount of information an adversary acquires.

4.3.2. Measuring the degree of deanonymization

To estimate the success rate of the attack, we use a quality score based on

the anonymity degree proposed by Dı́az et al. [10]. The anonymity degree is

designed to measure the amount of information an attacker gains compared

to perfect anonymity (where each user has an equal probability of being the

originator of a given message). Let pi be the probability that a transaction i

originates from a given source Scontrol; N is the total number of transactions.

The entropy is calculated as:
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H(X) = −
N∑
i=1

pilog2(pi)

The maximal entropy is:

HM = log2(N)

The anonymity degree is defined as:

d =
H(X)

HM

The anonymity degree does not reflect the fact that the probability

distribution obtained by the adversary may not be well aligned with the

true probability distribution. To address this issue, we propose an adjusted

anonymity degree. First, we calculate the median square error e between our

probability distribution and the known true distribution (1 for transactions

from Scontrol and 0 for others), based on a subset of transactions from the

control set. The adjusted anonymity degree is defined as follows:

dadj = 1− (1− e) ∗ (1− d)

To explain on two edge case examples: If e = 0 (the attacker precisely

predicted the distribution), dadj = d; if e = 1 (the attacker’s distribu-

tion does not at all reflect the reality), dadj = 1 (the system retains full

anonymity).

The assumptions of our model have their limitations. Our clustering

technique depends on a user issuing a series of transactions in a relatively

short time window of several minutes (up to an hour), through the same set

of entry nodes (i.e. from the same session). If a user re-launches the client,
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their transactions issued before and after this event would not be linkable

by our technique.

5. Experiments

Assume our goal is to cluster transactions originating from one target

source Scontrol. We capture N transactions and know that n of them were

issued from Scontrol; k of them are known to us (n > k). We discard transac-

tions which are relayed to us by less than 10 peers or which were last relayed

to us earlier than 30 seconds after the logging started (this likely means their

propagation started before the experiment, and the relevant information is

not recorded). For each transaction i, we assign an a priori probability of

having originated from Scontrol: pi = n/N . For wallets with P2P broadcast,

the outline of our experiment is as follows.

1. establish parallel connections to a set of live peers, log the timestamps

of incoming messages;

2. launch two nodes Slearn and Scontrol;

3. issue two series of transactions (the learning and the control sets) from

Slearn and Scontrol respectively;

4. calculate the transaction correlation matrix w.r.t. the weights of prop-

agation times;

5. run the clustering algorithm with multiple sets of parameters and

choose the best clustering by Rand score on the “learning” set;

6. in the best clustering, assign the cluster weights proportionally to the

distribution of k known transactions from Scontrol (transactions from

Slearn get a zero probability weight);
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7. calculate the final adjusted anonymity score w.r.t. the probability

distribution among clusters;

8. visualize the results as a heatmap.

We focus on three networks for our experiments: Bitcoin testnet, Bitcoin

mainnet, and Zcash mainnet. Bitcoin testnet is the most active testnet of an

open cryptocurrency and is a perfect testing ground to perform fully-fledged

experiments. We test the applicability of our technique on the two mainnets

while not aiming to fully occupy the connection slots to avoid impacting the

real networks. For the experiments we choose popular wallets with well-

established brands (both Bitcoin-only and multi-coin), with centralized as

well as P2P broadcast mechanisms.

Our tool is not fully compatible with Dash and Monero. Dash, while

based on a fork of Bitcoin Core, introduces many additional message types to

manage the masternode network. Monero is implemented independently and

uses another networking mechanism, although based on the same principles.

For centralized wallets, instead of issuing two sets of transactions, we

only issue one set, using it as a “label” for a presumed wallet cluster. If

our transactions form a visible cluster, we inspect the IP addresses of nodes

which were among the first ones to broadcast them and assume those are

the wallet nodes. This allows us to infer the IP addresses of nodes which a

wallet uses for transaction broadcasts. We can then associate transactions

in the network with popular wallets.

We performed experiments on Bitcoin testnet (Bitcoin wallet), Bitcoin

mainnet (Bitcoin wallet, BRD, Coinomi, Mycelium), and Zcash (Coinomi).

Bitcoin wallet and BRD use P2P broadcast; Coinomi and Mycelium use

centralized broadcast. Experiments on testnet allow us to establish the
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(a) Mycelium (testnet) (b) Bitcoin wallet (testnet)

(c) Bitcoin wallet (d) BRD

(e) Coinomi (f) Coinomi (Zcash)

Figure 2: Experimental results (Bitcoin unless specified)
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upper bound on the effectiveness of our approach, as the testnet has a lower

transaction rate and fewer nodes, which allows us to occupy all available

connection slots. We considered the number of first propagations in the

range from 3 to 7, k = 5.

The results are presented in Figure 2. Our (control) transactions are

marked with black ticks. The color of each square represents the correlation

coefficient between the weight vectors of two transactions (darker is higher).

As expected, the matrices exhibit a block-diagonal structure, with clusters

along the main diagonal corresponding to transaction sources. The clusters

are clearly visible for the testnet version of Bitcoin wallet, we obtained a low

(good for the attacker) anonymity degree of 0.5089. The adjusted anonymity

degree (dadj) for Bitcoin wallet (mainnet) is 0.8646, BRD (mainnet) – 0.8413,

Coinomi – 0.9117. The experimental results show that while our technique

shows the expected results on small networks, the picture for the Bitcoin

mainnet is much less clear. This may be explained by a much larger total

number of nodes and transactions, and to the fact that we only run the

experiment on a subset of Bitcoin nodes to avoid disrupting the network.

5.1. Estimating the IP addresses of wallet’s nodes

Apart from clustering transactions, an adversary might be interested in

obtaining the IP address of the nodes which a centralized wallet uses for

transaction broadcast. While the IP address of a centralized wallet’s node

may not necessarily be secret, the fact that a transaction from a particular

Bitcoin address is propagated from such node may give an adversary a clue

on which software the victim is using, which helps set up e.g. phishing

or other social engineering attacks. We test this attack scenario in the

experiments on Mycelium (Bitcoin testnet) and Coinomi (Zcash).
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Mycelium transactions cluster well: they are quickly propagated from the

same two IP addresses (delay in single milliseconds), rebroadcasts from other

nodes follow after tens or even hundreds of milliseconds. According to IP ge-

olocation services, these nodes are located in Germany (2a01:4f9:2b:4ca::2)

and in Helsinki, Finland (95.216.68.181). According to a reverse DNS

lookup service robtex.com, one of these IP addresses corresponds to a

URL electrumx-b.mycelium.com. Both addresses belong to Hetzner (a

cloud provider), have an uptime of 2 months (at the time of writing), and a

latency of 25 ms, as per Bitnodes [2]. In a separate experiment, we discov-

ered that each of them has more than 700 slots. We discovered that there

are also Bitcoin mainnet nodes running at the same IP addresses.

In the Zcash experiment (Coinomi), though our transactions don’t form

a clear cluster, we observe that some of them (in the second cluster) were

first received from the same IP (5.79.123.194), which, we assume, is at

least one of the Coinomi’s nodes.

6. Discussion

Experiments have shown that our approach works well in small networks

(Bitcoin testnet, Zcash), but shows weaker results for Bitcoin mainnet. Bit-

coin mainnet, being substantially larger than alternative networks, requires

significant resources just to capture the traffic. Moreover, Bitcoin nodes have

fewer free slots, and often limit the number of slots one IP can occupy. These

factors combined with a higher overall transaction rate makes clustering in

Bitcoin harder. Note also that we deliberately connected only to a small

subset of the Bitcoin mainnet (up to 1000 out of approximately 10 thou-

sand nodes) due to resource constraints. A more resourceful attacker may
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achieve better results. In addition, an adversary can use the testnet version

of popular wallets to reveal information about the corresponding mainnet

nodes (assuming both testnet and mainnet nodes are run on servers with

related IP addresses). The main limitation of our technique is the assump-

tion that a user issues multiple transactions during a relatively short time

frame through the same node.

There is an inherent trade-off between wallets with centralized and P2P

broadcast. Centralized wallets may better protect the user’s privacy from ex-

ternal adversaries, but can themselves link users’ transactions and correlate

them with additional information obtained from the app. Users must also

trust centralized wallet providers for availability. Wallets with P2P broad-

cast eliminate the danger of censorship, denial of service or deanonymization

by the wallet provider, but reveal more information to an external observer.

Users of P2P wallets should connect to a trusted full node and avoid

sending multiple transactions within a short time frame. The best practices

for secure coding are especially relevant for mobile wallets, which run on

devices storing lots of personal data. Wallet developers should use as few

permissions as possible, open-source the code, provide alternative installa-

tion methods (F-Droid, direct APK download), and implement additional

network-level measures to prevent traffic analysis.

An attacker may leverage additional information to increase clustering

accuracy. For instance, transactions issued by regular users usually con-

tain a small number of inputs and two outputs (destination and change).

Transactions with a large number of inputs or outputs are likely to have

originated from a node associated with a business (a custodial wallet, an

exchange, a mining pool). An attacker trying to deanonymize a regular

user can remove clusters with many “enterprise” transactions, making the
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victim’s anonymity set smaller, and use known addresses of various services

from sources like [1]. We leave this research direction for future work.

6.1. Ethical considerations

All experiments were done on our own transactions and when possible

on the testnets. The experiments on the Bitcoin mainnet deliberately did

not attempt to occupy all connection slots, and operated only on a subset of

1000 nodes (out of approximately 10 000). Logs from mainnet experiments

will be deleted.

7. Related work

Early research on cryptocurrency privacy mostly covered Bitcoin public

blockchain graph analysis and proposed techniques such as mixing, where

users combine inputs in a joint transaction, making it harder for an adversary

to track the flow of coins [8][21]. Gervais et al. [14] analyze the privacy

implications of Bloom filters in SPV wallets.

The network-level privacy attacks on cryptocurrency users developed

from using a simple “first relayer” heuristic [15] [18] to more sophisticated

techniques: fingerprinting by entry set [6] (while abusing the Bitcoin DoS-

protection mechanism to prevent the victim from connecting over Tor [7]),

exploiting peculiarities in the update mechanism for known address database [16],

discovering the network topology from timing analysis [17]. These tech-

niques are being applied to privacy-focused cryptocurrencies as well [20].

Dandelion++ [12] is a message propagation protocol for P2P networks

designed to prevent deanonymization attacks by introducing asymmetry in

message propagation. In Dandelion++, a message is first propagated though
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multiple random hops in a linear fashion, and then disseminated with the ex-

isting gossip mechanism. The nodes for the first phase are chosen only from

outgoing connections. If implemented, it would prevent attacks which rely

on saturating free connection slots of remote nodes (including our clustering

technique).

8. Conclusion

We studied Android wallets for Bitcoin and the major privacy focused

cryptocurrencies. Most wallets do not satisfy our initial privacy criteria.

Many wallets obtain dangerous permissions and potentially leak users’ pri-

vate information. Static analysis reveals multiple defects in their source

code. P2P wallets do not implement privacy enhancing broadcast mecha-

nisms such as diffusion, which is used by Bitcoin Core.

We proposed and tested a transaction clustering technique based on

propagation timing. We showed that a global passive adversary can cluster

transactions issued from one device within a short time frame with relatively

high accuracy.The same set of tools allows an attacker to find out IP ad-

dresses of nodes which centralized wallets use for broadcasting transactions.

Privacy-focused cryptocurrencies, while employing sophisticated crypto-

graphic techniques to prevent blockchain analysis, are similar to Bitcoin on

the network level. Their lower overall popularity and a smaller anonymity

set make them susceptible to network analysis. A smaller number of privacy-

friendly wallets exacerbate the threat. We encourage privacy-conscious cryp-

tocurrency users to choose their wallet according to privacy trade-offs. We

also suggest wallet developers pay closer attention to privacy on the network

level.
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