
SmartCheck: Static Analysis of Ethereum Smart Contracts
Sergei Tikhomirov

University of Luxembourg
Esch-sur-Alzette, Luxembourg
sergey.s.tikhomirov@gmail.com

Ekaterina Voskresenskaya
SmartDec

Moscow, Russia
voskresenskaya@smartdec.net

Ivan Ivanitskiy
SmartDec

Moscow, Russia
ivanitskiy@smartdec.net

Ramil Takhaviev
SmartDec

Moscow, Russia
tahaviev@smartdec.net

Evgeny Marchenko
SmartDec

Moscow, Russia
marchenko@smartdec.net

Yaroslav Alexandrov
SmartDec

Moscow, Russia
alexandrov@smartdec.net

ABSTRACT
Ethereum is a major blockchain-based platform for smart contracts
– Turing complete programs that are executed in a decentralized
network and usually manipulate digital units of value. Solidity is
the most mature high-level smart contract language. Ethereum
is a hostile execution environment, where anonymous attackers
exploit bugs for immediate financial gain. Developers have a very
limited ability to patch deployed contracts. Hackers steal up to
tens of millions of dollars from flawed contracts, a well-known
example being “The DAO“, broken in June 2016. Advice on secure
Ethereum programming practices is spread out across blogs, papers,
and tutorials. Many sources are outdated due to a rapid pace of
development in this field. Automated vulnerability detection tools,
which help detect potentially problematic language constructs, are
still underdeveloped in this area.

We provide a comprehensive classification of code issues in Solid-
ity and implement SmartCheck – an extensible static analysis tool
that detects them1. SmartCheck translates Solidity source code into
an XML-based intermediate representation and checks it against
XPath patterns. We evaluated our tool on a big dataset of real-world
contracts and compared the results with manual audit on three con-
tracts. Our tool reflects the current state of knowledge on Solidity
vulnerabilities and shows significant improvements over alterna-
tives. SmartCheck has its limitations, as detection of some bugs
requires more sophisticated techniques such as taint analysis or
even manual audit. We believe though that a static analyzer should
be an essential part of contract developers’ toolbox, letting them
fix simple bugs fast and allocate more effort to complex issues.
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1The source code is available at https://github.com/smartdec/smartcheck.
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1 INTRODUCTION
Ethereum was introduced in 2014 and launched in 2015 [VB+14].
Ethereum nodes store data, execute smart contracts, and maintain
a shared view of the global state using a proof-of-work consensus
mechanism similar to that in Bitcoin [Tik17]. Contrary to previ-
ous attempts at blockchain programming, e.g., Bitcoin scripting,
Ethereum language is Turing complete and thus able to express
arbitrarily complex logic.

Developers write contracts in high-level languages (themost pop-
ular and mature one is Solidity) and compile them to bytecode of the
Ethereum virtual machine (EVM) – a stack-based VM operating on
256-bit words2. Compared to general purpose VMs like the Java vir-
tual machine, EVM is relatively simple, executes deterministically,
and natively supports certain cryptographic primitives [But17]. A
contract is deployed by broadcasting a transaction containing its
bytecode and initialization parameters. Miners include it in a block,
permanently storing the contract at a unique blockchain address.
Users interact with the contract by broadcasting transactions with
its address, the function to be called, and its arguments. Upon re-
quest, the contract can call other contracts and send units of ether –
the Ethereum native cryptocurrency – to users or other contracts.

To make spamming costly, the Ethereum protocol specifies a cost
(denominated in gas units) for each EVM operation [Woo14]. A user
pays upfront for the expected amount of gas the computation will
consume and gets a partial refund after a successful execution. If
an exception (including “out of gas“) occurs, all state changes are
reverted, but the gas may not be refunded3. The ether price of a
gas unit is determined by the market.

Ethereum allows people and companies globally to programmat-
ically encode and trustlessly enforce complex financial agreements.
This opens up new business models and constitutes a dramatic
change in the digital economy. New software development tools
are required to ensure correctness and security of smart contracts.

2It is also possible to write contracts in bytecode directly.
3Gas refunds depend on the exception type: assert consumes all gas, require does
not (starting from the Byzantium release in October 2017).

https://github.com/smartdec/smartcheck
https://doi.org/10.1145/3194113.3194115
https://doi.org/10.1145/3194113.3194115
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1.1 Security challenges in Ethereum
Security is a primary concern in Ethereum programming for multi-
ple reasons:

• Unfamiliar execution environment. Ethereumdiffers from
centrally managed execution environments, be that mobile,
desktop, or cloud. Developers are not used to their code be-
ing executed by a global network of anonymous, mutually
distrusting, profit-driven nodes.

• New software stack. The Ethereum stack (the Solidity com-
piler, the EVM, the consensus layer, etc) is under develop-
ment, with security vulnerabilities still being discovered [Sol17b].

• Very limited ability to patch contracts. A deployed con-
tract can not be patched4. This makes a popular “move fast
and break things“ motto inapplicable: a contract must be
correct before deployment.

• Anonymousfinanciallymotivated attackers. Compared
tomany cybercrimes, exploiting smart contracts offers higher
gains (the prices of cryptocurrencies have been increasing
rapidly), easier cashing out (ether and tokens are instantly
tradable), and lower risk of punishment due to anonymity.

• Rapid pace of development. Blockchain companies strive
to release their products fast, often at the expense of security.

• Suboptimal high-level language. Some argue that Solid-
ity itself inclines programmers towards unsafe development
practices [ydt16].

A textbook example of an Ethereum contract exploit is the DAO
hack. The DAO was an Ethereum-based venture capital fund. In
May 2016, it collected around $150 million in the largest crowdfund-
ing campaign to date. In June 2016, an unknown hacker exploited
multiple vulnerabilities in the DAO code and gained control over
ether worth around $50 million at that time [Sir16]. Though the
Ethereum protocol executed correctly, the core developers proposed
a hard fork to restore stakeholders’ deposits, violating the premise
of decentralized applications running “exactly as programmed“5.
More recent examples of high-profile loss of ether due to software
vulnerabilities include two incidents with the Parity multi-signature
wallet in July and November 2017 [Pal17]. These and many similar
events of a smaller scale illustrate the importance of security in
Ethereum.

For the purposes of this paper, we assume correctness of the
Ethereum core infrastructure and focus on security from a contract
developer’s viewpoint. We classify issues in Solidity source code
and develop a static analysis tool – SmartCheck – that detects them.
We test SmartCheck on a large set of real-world contracts and
measure the relative prevalence of various code issues. SmartCheck
shows significant improvements over existing alternatives in terms
of false discovery rate (FDR) and false negative rate (FNR).

2 CLASSIFICATION OF ISSUES IN SOLIDITY
CODE

We classify Solidity code issues as follows (based on [Hen17]):

4Though workarounds exist, such as proxy contracts redirecting calls to an adaptable
address of the latest version of the main contract.
5Concerns about Ethereum’s governance lead to the creation of Ethereum Clas-
sic [Eth17b] – a continuation of the Ethereum blockchain without the DAO fork.

• Security issues lead to exploits by a malicious user account
or contract;

• Functional issues cause the violation of the intended func-
tionality6;

• Operational issues lead to run-time problems, e.g., bad per-
formance;

• Developmental issues make code difficult to understand
and improve.

We differentiate between functional and security issues: the former
pose problems even without an adversary (though an external
malicious actor can aggravate the situation), while the latter do
not. Our primary sources are [Con16] [Sol17a] [ABC17] [DAK+15]
[CLLZ17] [Sol17c]. See Table 1 for a summary of all issues (the
second column denotes severity: 3 – high, 2 – medium, 1 – low).

2.1 Security issues
2.1.1 Balance equality. Avoid checking for strict balance equal-

ity: an adversary can forcibly send ether to any account by mining
or via selfdestruct.

if (this.balance == 42 ether) { /* ... */} // bad

if (this.balance >= 42 ether) { /* ... */} // good

The pattern detects comparison expressions with == which con-
tain this.balance as either left- or right-hand side.

2.1.2 Unchecked external call. Expect calls to external contract
to fail. When sending ether, check for the return value and handle
errors. The recommended way of doing ether transfers is transfer
(see Section 2.1.4).

addr.send (42 ether); // bad

if (!addr.send (42 ether)) revert; // better

addr.transfer (42 ether); // good

The pattern detects an external function call (call, delegatecall,
or send) which is not inside an if-statement.

2.1.3 DoS by external contract. A conditional statement (if,
for, while) should not depend on an external call: the callee may
permanently fail (throw or revert), preventing the caller from
completing the execution.

In the following example, the caller expects the oracle to re-
turn an integer value (badOracle.answer()), but the actual oracle
implementation may throw an exception in some or all cases.

function dos(address oracleAddr) public {

badOracle = Oracle(oracleAddr);

if (badOracle.answer () < 42) { revert; }

// ...

}

This rule contains multiple patterns:

• an if-statement with an external function call in the condi-
tion and a throw or a revert in the body;

• a for- or an if-statement with an external function call in
the condition.

6Though without a specification we only assume what the intended functionality is.
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2.1.4 send instead of transfer. The recommended way to per-
form ether payments is addr.transfer(x), which automatically
throws an exception if the transfer is unsuccessful, preventing the
problem described in Section 2.1.2. The pattern detects the send
keyword.

2.1.5 Re-entrancy. Consider the following code:
pragma solidity 0.4.19;

contract Fund {

mapping(address => uint) balances;

function withdraw () public {

if (msg.sender.call.value(balances[msg.sender ])())
balances[msg.sender] = 0;

}

}

The contract at msg.sender can getmultiple refunds and retrieve
all Fund’s ether by recursively calling withdraw before its share
is set to 0. Besides, it can modify the state of some third contract,
which Fund depends on. Use the “checks – effects – interactions“
pattern: first check the invariants, then update the internal state,
then communicate with external entities (see also Section 2.1.4):
function withdraw () public {

uint balance = balances[msg.sender ];
balances[msg.sender] = 0;

msg.sender.transfer(balance);
// state reverted , balance restored if transfer fails

}

The pattern detects an external function call which is followed
by an internal function call.

2.1.6 Malicious libraries. Third-party libraries can be malicious.
Avoid external dependencies or ensure that third-party code imple-
ments only the intended functionality. The pattern simply detects
the library keyword (and thus produces some false positives).

2.1.7 Using tx.origin. Contracts can call each others’ public
functions. tx.origin is the first account in the call chain (always
an externally owned one, i.e., not a contract); msg.sender is the
immediate caller. For instance, in a call chain A → B → C, from the
C’s viewpoint, tx.origin is A, and msg.sender is B.

Use msg.sender instead of tx.origin for authentication. Con-
sider a wallet:
pragma solidity 0.4.19;

contract TxWallet {

address private owner;

function TxWallet () { owner = msg.sender; }

function transferTo(address dest , uint amount) public
{

require(tx.origin == owner); // authentication

dest.transfer(amount);
}

}

User sends ether to the address of the TxAttackerWallet, which
forwards the call to a TxWallet and obtains all funds, acting as the
user (tx.origin):
pragma solidity 0.4.19;

interface TxWallet {

function transferTo(address dest , uint amount);

}

contract TxAttackerWallet {

address private owner;

function TxAttackerWallet () { owner = msg.sender; }

function () payable {

TxWallet(msg.sender).transferTo(owner , msg.sender
.balance);

}

}

The pattern detects the environmental variable tx.origin.

2.1.8 Transfer forwards all gas. Solidity provides many ways to
transfer ether (see Section 2.1.4). addr.call.value(x)() transfers
x ether and forwards all gas to addr, potentially leading to vulnera-
bilities like re-entrancy (see Section 2.1.5). The recommended way
to transfer ether is addr.transfer(x), which only provides the
callee with a “stipend“ of 2300 gas. The pattern detects functions
whose name is call.value and whose argument list is empty.

2.2 Functional issues
2.2.1 Integer division. Solidity supports neither floating-point

nor decimal types. For integer division, the quotient is rounded
down. Account for it, especially when calculating ether or token
amounts. The pattern detects division (/) where the the numerator
and the denominator are number literals.

2.2.2 Locked money. Contracts programmed to receive ether
should implement a way to withdraw it, i.e., call transfer (recom-
mended), send, or call.value at least once. The patterns detects
contracts that contain a payable function but contain neither of
the withdraw-enabling functions mentioned above.

2.2.3 Unchecked math. Solidity is prone to integer over- and
underflow7. Overflow leads to unexpected effects and can lead to
loss of funds if exploited by a malicious account. Use the SafeMath
library8 that checks for overflows (multiple implementations exist,
e.g. [Saf17]). The pattern detects arithmetic operations +, -, *, which
are not inside a conditional statement. This rule was temporarily
muted for testing (Section 4) due to a high false positive rate.

2.2.4 Timestamp dependence. Miners can manipulate environ-
mental variables and are likely to do so if they can profit from it.
Consider a lottery that distributes prizes depending on whether
now (alias for block.timestamp) is odd or even:

if (now % 2 == 0) winner = pl1; else winner = pl2;

A miner can tweak the timestamp and gain unfair advantage.
Use block numbers and average time between blocks to estimate
the current time. Use secure sources of randomness, such as RAN-
DAO [Ran17]. The pattern detects the environmental variable now.

2.2.5 Unsafe type inference. Solidity supports type inference:
the type of i in var i = 42; is the smallest integer type sufficient
to store the right-hand side value (uint8). Consider a for-loop:
for (var i = 0; i < array.length; i++) { /*...*/ }

The type of i is inferred to uint8. If array.length is bigger
than 256, an overflow will occur. Explicitly define the type when
declaring integer variables:
for (uint256 i = 0; i < array.length; i++) { /*...*/ }

The pattern detects assignments where the left-hand side is a
var and the right-hand side is an integer (matches ˆ[0-9]+$).
7Referred to as simply overflow for brevity.
8See Section 2.1.6 for advice on library usage.
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2.3 Operational issues
2.3.1 Byte array. Use bytes instead of byte[] for lower gas

consumption. The pattern detects the construction byte[].

2.3.2 Costly loop. Ethereum is a very resource-constrained en-
vironment. Prices per computational step are orders of magnitude
higher than with centralized cloud providers. Moreover, Ethereum
miners impose a limit on the total number of gas consumed in a
block. In the following example, if array.length is large enough,
the function exceeds the block gas limit, and transactions calling it
will never be confirmed:
for (uint256 i = 0; i < array.length; i++) { costlyF (); }

This becomes a security issue, if an external actor influences
array.length. E.g., if array enumerates all registered addresses,
and registration is open, an adversary can register many addresses,
causing denial of service. The rule includes two patterns:

• a for-statement with a function call or an identifier inside
the condition;

• a while-statement with a function call inside the condition.

2.4 Developmental issues
2.4.1 Token API violation. ERC20 is the de-facto standard API

for implementing tokens – transferable units of value managed by
a contract. Exchanges and other third-party services may struggle
to integrate a token that does not conform to it. Certain ERC20
functions (approve, transfer, transferFrom) return a bool indi-
cating whether the operation succeded. It is not recommended to
throw exceptions (revert, throw, require, assert) inside those
functions. Note that library functions may also throw exceptions
(see Section 2.1.6).
function transferFrom(address _spender , uint _value)

returns (bool success) {

require (_value < 20 wei);
// ...

}

The pattern detects a contract inherited from a contract with
a name including the word “token“, which may throw exceptions
from inside one of the functions mentioned above.

2.4.2 Compiler version not fixed. Solidity source files indicate
the versions of the compiler they can be compiled with:
pragma solidity ^0.4.19; // bad: 0.4.19 and above

pragma solidity 0.4.19; // good: 0.4.19 only

It is recommended to follow the latter example, as future compiler
versions may handle certain language constructions in a way the
developer did not foresee. The pattern detects the version operator ˆ
in the pragma directive.

2.4.3 private modifier. Contrary to a popular misconception,
the private modifier does not make a variable invisible. Miners
have access to all contracts’ code and data. Developers must ac-
count for the lack of privacy in Ethereum. The pattern detects state
variable declarations with a private modifier.

2.4.4 Redundant fallback function. Contracts should reject un-
expected payments (see Sections 2.1.1, 2.2.2). Before Solidity 0.4.0,
it was done manually:
function () payable { throw; }

Starting from Solidity 0.4.0, contracts without a fallback function
automatically revert payments, making the code above redundant.
The pattern detects the described construction (only if the pragma
directive indicates the compiler version not lower than 0.4.0).

2.4.5 Style guide violation. In Solidity, function9 and event names
usually start with a lower- and uppercase letter respectively:
function Foo(); // bad

event logFoo (); // bad

function foo(); // good

event LogFoo (); // good

Violating the style guide decreases readability and leads to confu-
sion. The pattern detects the described constructions.

2.4.6 Implicit visibility level. The default function visibility level
in Solidity is public. Explicitly define function visibility to prevent
confusion.
function foo() { /*...*/ } // bad

function foo() public { /*...*/ } // good

function bar() private { /*...*/ } // good

The pattern detects function and variable definitions without a
visibility modifier.

3 AUTOMATED ANALYSIS OF SMART
CONTRACTS

3.1 Approaches to code analysis
Dynamic code analysis runs the program and considers only a
subset of all execution paths on some input data [LSCL12]. Static
code analysis may guarantee full coverage without executing the
program and may run fast enough on code of reasonable size. Static
analysis usually includes three stages:

(1) building an intermediate representation (IR), such as abstract
syntax tree or three-address code, for a deeper analysis com-
pared to analyzing text;

(2) enriching the IR with additional information [Wög05] us-
ing algorithms such as control- and dataflow analysis (syn-
onym, constant, and type propagation [ASU07]), taint anal-
ysis [TPF+09], symbolic execution, abstract interpretation;

(3) vulnerability detection w.r.t. a database of patterns, which
define vulnerability criteria in IR terms.

In this paper, we do not consider formal verification methods, as
they require a rarely available formal specification of the contract’s
intended functionality.

3.2 SmartCheck
We propose SmartCheck – a static analysis tool for Ethereum smart
contracts implemented in Java. SmartCheck runs lexical and syn-
tactical analysis on Solidity source code. It uses ANTLR [ant17] and
a custom Solidity grammar to generate an XML parse tree [ASU07]
as an intermediate representation (IR). We detected vulnerability
patterns by using XPath [xpa] queries on the IR. Thus SmartCheck
provides full coverage: the analyzed code is fully translated to the
IR, and all its elements can be reached with XPath matching. Line
numbers are stored as XML attributes and help localize findings in

9With the exception of constructors: they must share the name with the contract and
thus usually start with an uppercase letter.
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Table 1: Code issues detected by SmartCheck
(gray background – false positives possible)

Name S. Description
Balance equal-
ity (2.1.1)

2 Adversary can manipulate contract logic
by forcibly sending it ether. Use non-strict
inequality on balances

Unchecked ex-
ternal call (2.1.2)

3 The return value is not checked. Always
check return values of functions

DoS by external
contract (2.1.3)

3 Expect external calls to deliberately throw

send instead of
transfer (2.1.4)

2 The return value of send should be
checked. Use transfer, which is equiva-
lent to if (!send()) throw;

Re-
entrancy (2.1.5)

3 External contracts should be called after all
local state updates

Malicious
libraries (2.1.6)

1 Using external libraries may be dangerous.
Avoid external code dependencies, audit all
code that is part of the project

Using
tx.origin (2.1.7)

2 A malicious contract can act on a user’s
behalf. Use msg.sender for authentication

Transfer for-
wards all
gas (2.1.8)

3 a.call.value()() forwards all gas, al-
lowing the callee to call back. Use
a.transfer(): it only provides the callee
with 2300 gas (insufficient for a callback)

Integer divi-
sion (2.2.1)

1 The quotient is rounded down. Account for
it, especially for ether and token amounts

Locked
money (2.2.2)

2 The contract receives ether, but there is no
way to withdraw it. Implement a withdraw
function or reject payments

Unchecked
math (2.2.3)

1 Without extra checks, integer over- and
underflow is possible. Use SafeMath

Timestamp de-
pendence (2.2.4)

2 Miners can alter timestamps. Make critical
code independent of the environment

Unsafe type in-
ference (2.2.5)

2 Type inference choses the smallest integer
type possible. Explicitly specify types

Byte array (2.3.1) 1 byte[] requires more than bytes

Costly
loop (2.3.2)

2 Expensive computation inside loops may
exceed the block gas limit. Avoid loops with
big or unknown number of steps

Token API viola-
tion (2.4.1)

1 The contract throws where the ERC20 stan-
dard expects a bool. Return false instead

Compiler
version not
fixed (2.4.2)

1 Contract compiles with future compiler ver-
sions. Specify the exact compiler version

private modi-
fier (2.4.3)

1 The private modifier does not hide the
variable’s value, only prevents external con-
tracts from editing it

Redundant
fallback func-
tion (2.4.4)

1 The payment rejection fallback is redun-
dant. Remove the function to save space:
payments are rejected automatically

Style guide viola-
tion (2.4.5)

1 Unfamiliar capitalization style causes con-
fusion. Start function names with lower-
case, events with uppercase

Implicit visibil-
ity level (2.4.6)

1 Functions are public by default. Avoid am-
biguity: explicitly declare visibility level

Figure 1: Parse tree for the Balance equality code example
ifStatement

block

}. . .{

ifCondition

expression

expression

moneyExpr

etherprimaryExpr

numberLiteral

42

==expression

envVarDef

this.balance

if

source code. IR attributes can be enriched with additional informa-
tion when new analysis methods are implemented. The tool can
be extended to support other smart contact languages by adding
an ANTLR grammar and a pattern database (IR-level algorithms
remain unchanged).

As an example, consider the Balance equality issue (2.1.1).We aim
to detect constructions that test the contract’s balance for equality,
for instance:
if (this.balance == 42 ether){...}.

The parse tree of this construction is shown in Figure 1.
The corresponding XPath pattern is shown in Listing 1.
// expression[expression // envVarDef

[matches(text()[1],"^this.balance$")]]

[matches(text()[1],"^==|!=$")]

Listing 1: XPath pattern for the Balance equality issue

In this case we do not expect false positives, as we are able to
precisely describe the target construction in XPath10.

More complex rules can not be precisely described with XPath,
which leads to false positives. Consider the Re-entrancy issue (2.1.5).
SmartCheck reports violations of the Checks-Effects-Interactions
(CEI) pattern, which does not always lead to re-entrancy (Listing 2).
pragma solidity 0.4.19;

contract Foo {

bool inBar = false;
function bar(address someAddress) {

if (inBar) throw;
inBar = true;
someAddress.transfer (0);
inBar = false;

}

}

Listing 2: Violation of CEI not leading to re-entrancy

10Assuming that ANTLR builds the AST correctly based on the Solidity grammar.
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4 EXPERIMENTAL RESULTS
4.1 Goals and definitions
We compare SmartCheck with three freely available tools aimed at
statically detecting vulnerabilities in Ethereum contracts: Oyente,
Remix, and Securify11 and with the results of manual audit.

We define a true finding as an issue (detected by a tool with
manual verification or manually) that is a bad practice and should
be fixed from our viewpoint (it may or may not be an exploitable
vulnerability). All issues found by the tools weremanually labeled as
either true positive (TP) or false positive (FP). A false negative (FN)
for each of the four tools (Oyente, Remix, Securify, and SmartCheck)
is a true finding that was not detected by this tool.

For each tool, the false discovery rate (FDR) is the number of FPs
for this tool divided by the number of all issues reported by this
tool: FDR = FP / (TP + FP). False negative rate (FNR) is the number
of FNs for this tool divided by the number of all true findings (found
by any of the tools or manually), which is the sum of TP and FN
for this tool: FNR = FN / (TP + FN).

Section 4.2 assesses FDR and FNR of SmartCheck and three other
tools on three typical contracts. Section 4.3 measures the prevalence
of code issues on a large set of real-world contracts.

4.2 Case studies
We consider three contracts: Genesis (“the platform for the pri-
vate trust management market“ [Gen17a], source code [Gen17b],
analyzed at commit 1ecf99d), Hive (“the first crypto currency
invoice financing platform“ [Hiv17a], source code [Hiv17b], an-
alyzed at commit 0d54699), and Populous (“an online platform
that matchmakes invoice sellers to invoice buyers hosted on the
blockchain“ [Pop17a], source code [Pop17b], analyzed at commit
10de4ae).

The FDR and FNR for each tool (in % and in absolute numbers)
are presented in Table 2.

Oyente and Securify did not show any TPs on these threee con-
tracts. Remix detected TPs only in the Populous contract. Remix and
SmartCheck showed an overall FDR of 97% and 69% respectively,
and an overall FNR of 92% and 47% respectively. This means that
SmartCheck showed better FDR and FNR compared to its closest
competitor. Overall, SmartCheck reported 87 issues in the three
contracts.

Requirements for code analysis tools differ across platforms and
domains. Due to a peculiar security landscape in smart contract
programming (see Section 1.1), low FN rate is crucial (a missed
vulnerability can be disastrous), whereas a relatively high FP rate
is tolerable: most contracts contain only a few hundreds of lines of
code (see Section 4.3) and can be audited manually.

Though SmartCheck’s FDR of 69% may seem pretty high, it is
not a serious issue in this domain. 47% is a reasonable level of FNR,
since many vulnerabilities in smart contracts are related to business
logic and can not be detected automatically. Most of SmartCheck’s
FNs were found manually (not by other tools).

SmartCheck detected a critical issue in one of the contracts:
an attacker could create an unlimited number of internal entities

11In case of Securify, we consider only partial results, since full results are not displayed
in the publicly available version of the tool.

and block the normal operation of the contract. A public function
(i.e., such that any Ethereum user can call it) allowed to add an
element to an internal array (Listing 3). Several critical functions
then iterated through this array (e.g., Listing 4), so an attacker
could make those functions permanently fail (a function call would
require more gas than the block gas limit).
function createGroup(string _name , uint _goal)

onlyOpenAuction

returns (uint8 err , uint groupIndex)

{

if(checkDeadline () == false && _goal >= fundingGoal &&

_goal <= invoiceAmount) {

groupIndex = groups.length ++;
groups[groupIndex ]. groupIndex = groupIndex;

groups[groupIndex ].name = _name;

groups[groupIndex ].goal = _goal;

EventGroupCreated(groupIndex , _name , _goal);

return (0, groupIndex);

} else {

return (1, 0);

}

}

Listing 3: Adding an element to the internal array

function findBidder(bytes32 bidderId) constant returns (

uint8 err , uint groupIndex , uint bidderIndex) {

for(groupIndex = 0; groupIndex < groups.length;
groupIndex ++) {

for(bidderIndex = 0; bidderIndex < groups[groupIndex

]. bidders.length; bidderIndex ++) {

if (Utils.equal(groups[groupIndex ]. bidders[

bidderIndex ].bidderId , bidderId) == true) {

return (0, groupIndex , bidderIndex);

}

}

}

return (1, 0, 0);

}

Listing 4: Iterating through the internal array

4.3 Testing on a massive sample
Wedownloaded the source code of 4,600 verified contracts (1,537,954
lines of code) as of 4 October 2017 from Etherscan [Eth17a] using a
Java library JSoup [JSo17] and ran SmartCheck on this dataset.

The contract balances differ significantly (see Figure 2). The vast
majority (3984, or 86.6%) of contracts have a zero balance. One
contract holds over one million ether (1,500,000, or $440 million at
the time of testing), which accounts for 38.4% of the total balance
of all contracts. Contracts have from 1 to 2,525 lines of code, with
an average of 334 lines and a median of 221 lines.

SmartCheck analyzed the dataset in 7644 seconds (437 lines
per second12). As per SmartCheck, 99.9% of contracts have issues,
63.2% of contracts have critical vulnerabilities13. The findings are
presented in Table 3 and Figure 3 (colors denote severity levels:
black – high, dark gray – medium, light gray – low). The most
prevalent issue, Implicit visibility level (detected 81160 times,

12Intel Core i5-4210M @ 2.60GHz, 12 GB RAM, Windows 8.1 64 bit
13The issues found by SmartCheck in the big dataset were not manually verified.
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Table 2: Tools results on the three projects and overall

Project Oyente Remix Securify SmartCheck

Genesis Vision
TP/FP/FN 0/6/10 0/40/10 0/19/10 7/22/3
FDR (%) 100 100 100 75.86
FNR (%) 100 100 100 30.00

Hive
TP/FP/FN 0/6/22 0/11/22 0/6/22 6/7/16
FDR (%) 100 100 100 53.85
FNR (%) 100 100 100 72.73

Populous
TP/FP/FN 0/7/19 4/60/15 0/45/19 14/31/5
FDR (%) 100 93.75 100 68.89
FNR (%) 100 78.95 100 26.32

Overall
TP/FP/FN 0/19/51 4/111/47 0/70/51 27/60/24
FDR (%) 100 96.52 100 68.97
FNR (%) 100 92.16 100 47.06

Figure 2: Distribution of non-zero contract balances (ether)
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which accounts for 67.296% of all findings), is excluded from the
figure for clarity.

5 RELATEDWORK
Multiple tools aim at improving the security and correctness of
Ethereum smart contracts. Static checks are built into the online So-
lidity compiler Remix [Rem17]. Oyente [LCO+18] is a symbolic exe-
cution tool vulnerability detection in EVMbytecode. Securify [Sec17]
analyzes Solidity source code as well as EVM bytecode. [BDLF+16]
and [PE16] propose writing Ethereum contracts in safer languages
(F* and Idris respectively). [Hir17b] describes existing attempts
to formal verification of EVM bytecode as well as the EVM itself.
[Hir17a] and [LCO+16] use symbolic execution to analyze EVM
bytecode. [HSZ+17] formally describes the full semantics of the
EVM, providing the foundation for formal verification tools for
EVM bytecode .

Figure 3: Findings on the big dataset
(excluding Implicit visibility level)
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Table 3: Code issues detected on a big dataset

Severity Pattern Findings % of all

high
Re-entrancy 4015 3.329
Unchecked external call 986 0.818
Transfer forwards all gas 275 0.228

medium

DoS by external contract 7864 6.521
Timestamp dependence 7692 6.378
send instead of transfer 3370 2.794
Costly loop 2610 2.164
Unsafe type inference 638 0.529
Using tx.origin 197 0.163
Balance equality 113 0.094

low

Implicit visibility level 81160 67.296
Compiler version not fixed 3699 3.067
Integer division 1727 1.432
Style guide violation 1626 1.348
private modifier 1223 1.014
Token API violation 1410 1.169
Malicious libraries 1395 1.157
Locked money 530 0.439
Redundant fallback function 64 0.053
Byte array 7 0.006

6 CONCLUSION AND FUTUREWORK
We provided a comprehensive overview and classification of the
currently known code issues in Solidity – the major high-level lan-
guage for Ethereum smart contracts. We implemented SmartCheck
– an efficient static analysis tool for Solidity, which offers significant
improvements over existing alternatives. We tested out tool on a
massive set of real-world contracts and detected code issues in the
vast majority of them.

The tool can be improved in multiple directions: improving the
grammar14, making patterns more precise (e.g., the temporarily
muted Unchecked math), adding new patterns, implementing more
sophisticated static analysis methods, adding support for other
languages.

Security is still an issue in blockchain development. We hope that
SmartCheck will help solve this major challenge by providing smart
contract developers with fast and relevant feedback on potentially
problematic source code patterns.
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